Hye-Won Dong, Ph.D. Candidate

Department of Architectural Engineering

EDUCATION

• Ph.D. Candidate, Department of Architectural Engineering, Hanyang University (2017--Present)

Thesis Topic: Energy Performance of Waste Heat Recovery Organic Rankine based Combined Heat and Power System for Zero-energy Buildings

• Master of Science in Architectural Engineering, Department of Architectural Engineering, Hanyang University (2017)

Thesis: Primary Energy Savings and CO₂ Emission Rate of District Heat Source Applied to Desiccant-enhanced Evaporative Cooling System

• Bachelor of Engineering, Department of Architectural Engineering, Hanyang University (2015)

Thesis: Development of User friendly Performance Prediction Model for Proton Exchange Membrane Fuel Cell by Design of Experiments

PROFESSIONAL ACTIVITIES

- American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Student Member (2015–Present)
- Korean Institute of Architectural Sustainable Environment and Building System (KIAEBS) Member (2015–Present)
- The Society of Air-conditioning and Refrigerating Engineers of Korea (SAREK) Member (2017–Present)
- Architectural Institute of Korea (AIK) Member (2015–Present)

HONORS AND AWARDS

- Best Presentation Award, The Society of Air-conditioning and Refrigerating Engineers of Korea (2020)
- WISET-SAREK New Researcher Award (2019)
- Best Presentation Award, Korean Institute of Architectural Sustainable Environment and Building System (2015, 2016, 2018)
- Best Paper Award, The Society of Air-conditioning and Refrigerating Engineers of Korea (2017, 2020)
- Best Presentation Award, Architectural Institute of Korea (2016)

RECENT PUBLICATIONS

Dong, H.W., Jeong, J.W. (2020). "Design and preliminary results of organic rankine cycle for liquid desiccant system", Applied Thermal Engineering, 178

Dong, H.W., Kim, B.J., Yoon, S.Y., Jeong, J.W. (2020). "Energy benefit of organic Rankine cycle in high-rise apartment building served by centralized liquid desiccant and evaporative cooling-assisted ventilation system", Sustainable Cities and Society, 60

Dong, H.W., Jeong, J.W. (2020). "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system", Renewable Energy, 147, pp.2358–2373

Dong, H.W., Cho, H.J., Park, J.Y., & Jeong, J.W. (2019). "Optimum regeneration temperature of a desiccant solution in a packaged liquid desiccant-assisted air conditioning unit", International Journal of Refrigeration, 101, pp.155–166

Park, J.Y., **Dong, H.W.**, Cho, H.J., & Jeong, J.W. (2019). "Energy benefit of a cascade liquid desiccant dehumidification in a desiccant and evaporative cooling-assisted building air-conditioning system", Applied Thermal Engineering, 147, pp.291–301

Kim, W., **Dong, H.W.**, Park, J., Sung, M., & Jeong, J.W. (2018). "Impact of an ultraviolet reactor on the improvement of air quality leaving a direct evaporative cooler", Sustainability, 10(4), pp.1–16

Dong, H.W., Lee, S.J., Yoon, D.S., Park, J.Y., & Jeong, J.W. (2017). "Impact of district heat source on primary energy savings of a desiccant-enhanced evaporative cooling system", Energy, 123, pp.432–444

Lee, S.J., Kim, H.J., **Dong, H.W.**, & Jeong, J.W. (2017). "Energy saving assessment of a desiccantenhanced evaporative cooling system in variable air volume applications", Applied Thermal Engineering, 117, pp.94–108

Kim, M.H., **Dong, H.W.**, Park, J.Y., & Jeong, J.W. (2016). "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell", Applied Energy, 180, pp.446–456

Ham, S.W., Jo, S.Y., **Dong, H.W.**, & Jeong, J.W. (2015). "A simplified PEM fuel cell model for building cogeneration applications". Energy and Buildings, 107, p.213–225